ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission

Level 3 Evapotranspiration (ET_ALEXI) Product Specification Document

Final November 18, 2019

Martha C. Anderson, ECOSTRESS Science Team Member ECOSTRESS Algorithm Development Team ECOSTRESS Science Team U.S. Department of Agriculture Agricultural Research Service

Kerry Cawse-Nicholson, ECOSTRESS Science Team Member ECOSTRESS Algorithm Development Team ECOSTRESS Science Team Jet Propulsion Laboratory, California Institute of Technology

ECOSTRESS Science Document no. JPL D-94651

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the ECOSTRESS DocuShare Library (*) at https://bravo-lib.jpl.nasa.gov/docushare/dsweb/View/Library-509
(*) Access limited to user group

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

ECOSTRESS Level 3 Evapotranspiration (ET_ALEXI) Product Specification Document

Prepared by:	
Kerry Cawse-Nicholson ECOSTRESS Algorithm Development Team	Date
Martha Anderson ECOSTRESS Science Team	Date
Approved by:	
Dana Freeborn ECOSTRESS Mission System Manager	Date
Eugene Chu ECOSTRESS SDS System Engineer	Date
Concurred by:	
Simon Hook ECOSTRESS Principal Investigator	Date

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

*** Original signature page on file in project physical repository ***

Document Change Log

Revision	Date	Sections Changed	Author
Preliminary	02/23/2016	All	Martha Anderson Joshua Fisher
	06/06/2016	T2-1, T2-2, T3-1	Eugene Chu
	07/26/2016	3.0, 3.1	Eugene Chu
	08/02/2016	3.0, 3.1	Eugene Chu
Final	11/18/2019	1.5, 3.2, 3.3	Kerry Cawse- Nicholson

Document TBD, TBR, TBS

Section/Page	Description	Date

Contacts

Readers seeking additional information about this document may contact the following ECOSTRESS Algorithm Development team members:

Martha C. Anderson

Hydrology and Remote Sensing Laboratory USDA - ARS 103000 Baltimore Ave Beltsville, MD 20705 Email: martha.anderson@ars.usda.gov

Office: (301) 504-6616

Joshua B. Fisher

MS 233-305C Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 Email: jbfisher@jpl.nasa.gov

Office: (818) 354-0934

Kerry Cawse-Nicholson

MS 183-503 Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109

Email: kcawseni@jpl.nasa.gov

Office: (818) 354-1594

TABLE OF CONTENTS

Table	e of Contents	6
1.0	Introduction	7
1.1	Identification	7
1.2	Purpose and Scope	7
1.3	Mission Overview	7
1.4	Applicable and Reference Documents	7
1.4.1	Applicable Documents	7
1.4.2	Reference Documents	8
1.5	ECOSTRESS Data Products	8
2.0	Data Product Organazation	10
2.1	Product File Format	10
2.2	HDF5 Notation	10
2.2.1	HDF5 File	.10
2.2.2	HDF5 Group	.10
2.2.3	HDF5 Dataset	.10
2.2.4	HDF5 Datatype	.10
2.2.5	HDF5 Dataspace	.11
2.2.6	HDF5 Attribute	
2.3	ECOSTRESS File Organization	
2.3.1	Structure	.12
2.3.2	Data	.12
2.3.3	Element Types	
2.3.4	File Level Metadata	
2.3.5	Local Metadata	
2.4	Data Definition Standards	
2.4.1	Double Precision Time Variables	
2.4.2	Array Representation	.14
3.0	ECOSTRESS Product Files	15
3.1	Standard Metadata	
3.2	Product-Specific Metadata	
3.3	Product Data	
3.4	Product Metadata File	17
4.0	Appendix A: Abbreviations and Acronyms	18

1.0 INTRODUCTION

1.1 Identification

This is the Product Specification Document (PSD) for Level 3 (L3) data products of the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission. The ECOSTRESS L3(ET_ALEXI) product provides evapotranspiration (ET) generated from data acquired by the ECOSTRESS radiometer instrument according to the ALEXI/DisALEXI algorithm described in the ECOSTRESS L3(ET_ALEXI) Algorithm Theoretical Basis Document (ATBD) (JPL D-94646).

1.2 Purpose and Scope

This Product Specification Document (PSD) describes the standard Level 3 evapotranspiration (ET) product generated using the ALEXI/DisALEXI algorithm in a USDA-ARS facility. These include the detailed descriptions of the format and contents of the product and ancillary files that will be delivered to the Land Process Distributed Active Archive Center (LP-DAAC).

1.3 Mission Overview

The ECOSTRESS instrument measures the temperature of plants and uses that information to better understand how much water plants use and how they respond to stress.

ECOSTRESS addresses three overarching science questions:

How is the terrestrial biosphere responding to changes in water availability? How do changes in diurnal vegetation water stress impact the global carbon cycle? Can agricultural vulnerability be reduced through advanced monitoring of agricultural water consumptive use and improved drought estimation?

The ECOSTRESS mission answers these questions by accurately measuring the temperature of plants. Plants regulate their temperature by releasing water through pores on their leaves called stomata. If they have sufficient water, they can maintain their temperature. However, if there is insufficient water, their temperatures rise. This temperature rise can be measured with a sensor in space. ECOSTRESS uses a multispectral thermal infrared (TIR) radiometer to measure the surface temperature, deployed on the International Space Station. The instrument will measure radiances at 5 spectral bands in the 8-12.5 µm range with approximately 38 meter by 57 meter of spatial resolution on the ground.

1.4 Applicable and Reference Documents

"Applicable" documents levy requirements on the areas addressed in this document. "Reference" documents are identified in the text of this document only to provide additional information to readers. Unless stated otherwise, the document revision level is Initial Release. Document dates are not listed, as they are redundant with the revision level.

1.4.1 Applicable Documents

ECOSTRESS Project Level 3 Science Data System Requirements (JPL D-94088).

7

ECOSTRESS Science Data Management Plan (JPL D-94607)

423-ICD-005 ICD Between ECOSTRESS SDS and LPDAAC

ECOSTRESS Level 1 Algorithm Theoretical Basis Documents (JPL D-94641, D-94642)

ECOSTRESS Level 1 Algorithm Specification Document

ECOSTRESS Level 2 Algorithm Theoretical Basis Documents (JPL D-94643, D-94644)

ECOSTRESS Level 2 Algorithm Specification Document

ECOSTRESS Level 3 (ET ALEXI) Algorithm Theoretical Basis Document (JPL D-94646)

ECOSTRESS Level 3 (ET ALEXI) Algorithm Specification Document

1.4.2 Reference Documents

1.5 ECOSTRESS Data Products

The ECOSTRESS mission will generate 19 different distributable data products. The products represent four levels of data processing, with data granules defined as an image scene. Each image scene consists of 44 scans of the instrument mirror, each scan taking approximately 1.181 seconds, and each image scene taking approximately 52 seconds. Each image scene starts at the beginning of the first target area encountered during each orbit. Each orbit is defined as the equatorial crossing of an ascending International Space Stations (ISS) orbit.

ECOSTRESS Level 0 data include spacecraft packets that have been pre-processed by the Ground Data System (GDS). Level 1 products include spacecraft engineering data, the time-tagged raw sensor pixels appended with their radiometric calibration coefficients, the black body pixels used to generate the calibration coefficients, geolocated and radiometrically calibrated atsensor radiances of each image pixel, the geolocation tags of each pixel, and the corrected spacecraft attitude data. Level 2 products include the land surface temperature and emissivities of each spectral band retrieved from the at-sensor radiance data, and a cloud mask. Level 2 products also appear in image scene granules. Level 3 products contain evapotranspiration data derived from Level 2 data. Level 4 products contain evaporative stress index and water use efficiency derived from Level 3 data.

The four levels of data products are listed in Table 1-1. This document will discuss only the Level 3 ET ALEXI product.

ECOSTRESS L3(ET_ALEXI) PSD D-94651, Preliminary Table 1-1: ECOSTRESS Standard Products

Product type	Description		
L0	Level 0 "raw" spacecraft packets		
L1A_ENG	Spacecraft and instrument engineering data, including blackbody gradient		
	coefficients		
L1A_BB	Instrument blackbody calibration pixels		
L1A_PIX	Raw pixel data with appended calibration coefficients		
L1B_GEO	Geolocation tags, sun angles, and look angles, and calibrated, resampled at-		
	sensor radiances		
L1B_RAD	Corrected radiance at sensor		
L1B_MAPRAD	Resampled radiance on a fixed 70m grid, along with latitude, longitude and		
	other geolocation parameters		
L1B_ATT	Corrected spacecraft ephemeris and attitude data		
L2_LSTE	Land Surface temperature and emissivity		
L2_CLOUD	Cloud mask		
L3_ET_PT-JPL	Evapotranspiration retrieved from L2_LSTE using the PT-JPL Algorithm		
L3_ET_ALEXI	Evapotranspiration generated using the ALEXI/DisALEXI Algoirthm		
L4_ESI_PT-JPL	Evaporative Stress Index generated with PT-JPL		
L4_ESI_ALEXI	Evaporative Stress Index generated with ALEXI/DisALEXI		
L4_WUE	Water Use efficiency		

2.0 DATA PRODUCT ORGANAZATION

2.1 Product File Format

All ECOSTRESS standard products are stored in the Hierarchical Data Format version 5 (HDF5). HDF5 is a general purpose file format and programming library for storing scientific data. The National Center for Supercomputing Applications (NCSA) at the University of Illinois developed HDF to help scientists share data regardless of the source. The following sections provide some key elements of HDF5 that will be employed in ECOSTRESS data products. Complete documentation of the HDF5 structure and application software can be found at http://www.hdfgroup.org/HDF5

2.2 HDF5 Notation

The key concepts of the HDF5 Abstract Data Model are Files, Groups, Datasets, Datatypes, Attributes and Property Lists. The following sections provide a brief description of each of these key HDF5 concepts.

2.2.1 HDF5 File

A File is the abstract representation of a physical data file. Files are containers for HDF5 Objects. These Objects include Groups, Datasets, and Datatypes.

2.2.2 HDF5 Group

Groups are containers for other Objects, including Datasets, named Datatypes and other Groups. In that sense, groups are analogous to directories that are used to categorize and classify files in standard operating systems.

The notation for files is identical to the notation used for Unix directories. The root Group is "/". Like Unix directories, Objects appear in Groups through "links". Thus, the same Object can simultaneously be in multiple Groups.

2.2.3 HDF5 Dataset

The Dataset is the HDF5 component that stores user data. Each Dataset associates with a Dataspace that describes the data dimensions, as well as a Datatype that describes the basic unit of storage element. A Dataset can also have Attributes.

2.2.4 HDF5 Datatype

A Datatype describes a unit of data storage for Datasets and Attributes. Datatypes are subdivided into Atomic and Composite Types.

Atomic Datatypes are analogous to simple basic types in most programming languages. HDF5 Atomic Datatypes include Time, Bitfield, String, Reference, Opaque, Integer, and Float. Each atomic type has a specific set of properties. Examples of the properties associated with Atomic Datatypes are:

- Integers are assigned size, precision, offset, pad byte order, and are designated as signed or unsigned.
- Strings can be fixed or variable length, and may or may not be null-terminated.

10

• References are constructs within HDF5 Files that point to other HDF5 Objects in the same file.

HDF5 provides a large set of predefined Atomic Datatypes. Table 2-1 lists the Atomic Datatypes that are used in ECOSTRESS data products.

HDF5 Atomic	Description
Datatypes	
H5T_STD_U8LE	unsigned, 8-bit, little-endian integer
H5T_STD_U16LE	unsigned, 16-bit, little-endian integer
H5T_STD_U32LE	unsigned, 32-bit, little-endian integer
H5T_STD_U64LE	unsigned, 64-bit, little-endian integer
H5T_STD_I8LE	signed, 8-bit, little-endian integer
H5T_STD_I16LE	signed, 16-bit, little-endian integer
H5T_STD_I32LE	signed, 32-bit, little-endian integer
H5T_STD_I64LE	Signed, 64-bit, little-endian integer
H5T_IEEE_F32LE	32-bit, little-endian, IEEE floating point
H5T_IEEE_F64LE	64-bit, little-endian, IEEE floating point
H5T_STRING	character string made up of one or more bytes

Table 2-1: HDF5 Atomic Datatypes

Composite Datatypes incorporate sets of Atomic datatypes. Composite Datatypes include Array, Enumeration, Variable Length and Compound.

The Array Datatype defines a multi-dimensional array that can be accessed atomically.

Variable Length presents a 1-D array element of variable length. Variable Length Datatypes are useful as building blocks of ragged arrays.

Named Datatypes are explicitly stored as Objects within an HDF5 File. Named Datatypes provide a means to share Datatypes among Objects. Datatypes that are not explicitly stored as Named Datatypes are stored implicitly. They are stored separately for each Dataset or Attribute they describe.

None of the ECOSTRESS data products employ Enumeration or Compound data types.

2.2.5 HDF5 Dataspace

A Dataspace describes the rank and dimension of a Dataset or Attribute. For example, a "Scalar" Dataspace has a rank of 1 and a dimension of 1. Thus, all subsequent references to "Scalar" Dataspace in this document imply a single dimensional array with a single element.

Dataspaces provide considerable flexibility to HDF5 products. They incorporate the means to subset associated Datasets along any or all of their dimensions. When associated with specific properties, Dataspaces also provide the means for Datasets to expand as the application requires.

2.2.6 HDF5 Attribute

An Attribute is a small aggregate of data that describes Groups or Datasets. Like Datasets, Attributes are also associated with a particular Dataspace and Datatype. Attributes cannot be subsetted or extended. Attributes themselves cannot have Attributes.

2.3 ECOSTRESS File Organization

2.3.1 Structure

ECOSTRESS data products follow a common convention for all HDF5 Files. Use of this convention provides uniformity of data access and interpretation.

The ECOSTRESS Project uses HDF5 Groups to provide an additional level of data organization. All metadata that pertain to the complete data granule are members of the "/Metadata" Group. All other data are organized within Groups that are designed specifically to handle the structure and content of each particular data product.

2.3.2 Data

All data in HDF5 files are stored in individual Datasets. All related Datasets in an ECOSTRESS product are assigned to an HDF5 Group. A standard field name is associated with each Dataset. The field name is a unique string identifier. The field name corresponds to the name of the data element the Dataset stores. This document lists these names with the description of each data element that they identify.

Each Dataset is associated with an HDF5 Dataspace and an HDF5 Datatype. They provide a minimally sufficient set of parameters for reading the data using standard HDF5 tools.

2.3.3 Element Types

ECOSTRESS HDF5 employs the Data Attribute "Type" to classify every data field as a specific data type. The "Type" is an embellishment upon the standard HDF5 Datatypes that is designed specifically to configure ECOSTRESS data products.

Table 2-2 lists all of the "Type" strings that appear in the ECOSTRESS data products. The table maps each ECOSTRESS "Type" to a specific HDF5 Datatype in both the HDF5 file and in the data buffer. The table also specifies the common conceptual data type that corresponds to the "Type" in ECOSTRESS executable code.

Туре	HDF5 Datatype (File)	HDF5 Datatype (Buffer)	Conceptual Type
Unsigned8	H5T_STD_U8LE	H5T_NATIVE_UCHAR	unsigned integer
Unsigned16	H5T_STD_U16LE	H5T NATIVE USHORT	unsigned integer
Unsigned32	H5T_STD_U32LE	H5T_NATIVE_UINT	unsigned integer
Unsigned64	H5T_STD_U64LE	H5T_NATIVE_ULLONG	unsigned integer
Signed8	H5T_STD_I8LE	H5T_NATIVE_SCHAR	signed integer
Signed16	H5T_STD_I16LE	H5T_NATIVE_SHORT	signed integer
Signed32	H5T_STD_I32LE	H5T_NATIVE_INT	signed integer
Signed64	H5T_STD_I64LE	H5T_NATIVE_LLONG	signed integer
Float32	H5T_IEEE_F32LE	H5T_NATIVE_FLOAT	floating point
Float64	H5T_IEEE_F64LE	H5T_NATIVE_DOUBLE	floating point
VarLenStr	H5T_STRING	H5T_NATIVE_CHAR	character string

Table 2-2: Element Type Definitions

2.3.4 File Level Metadata

All metadata that describe the full content of each granule of the ECOSTRESS data product are stored within the explicitly named "/Metadata" Group. Metadata are handled using exactly the same procedures as those that are used to handle data. The contents of each Attribute that stores metadata conform to one of the ECOSTRESS Types. Most metadata elements are stored as scalars. A few metadata elements are stored as arrays. The metadata appear in a set of HDF5 Groups under the "/Metadata" Group. These HDF5 Groups contain a set of HDF5 Attributes.

2.3.5 Local Metadata

ECOSTRESS standards incorporate additional metadata that describe each HDF5 Dataset within the HDF5 file. Each of these metadata elements appear in an HDF5 Attribute that is directly associated with the HDF5 Dataset. Wherever possible, these HDF5 Attributes employ names that conform to the Climate and Forecast (CF) conventions. Table 2-3 lists the CF names for the HDF5 Attributes that ECOSTRESS products typically employ.

CF Compliant	Description	Required?		
Attribute Name				
Units	Units of measure. Appendix A lists applicable	Yes		
	units for various data elements in this product.			
valid_max	The largest valid value for any element in the	No		
_	Dataset. The data type in valid max matches the			
	type of the associated Dataset. Thus, if the			
	associated Dataset stores float32 values, the			
	corresponding valid_max will also be float32.			
valid_min	The smallest valid value for any element in the	No		
	Dataset. The data type in valid_min matches the			
	type of the associated Dataset. Thus, if the			
	associated Dataset stores float32 values, the			
	corresponding valid_min will also be float32.			
_FillValue	Specification of the value that will appear in the	Yes for all		
	Dataset when an element is missing or	numeric		
	undefined. The data type of _FillValue matches	data types		
	the type of the associated Dataset. Thus, if the			
	associated Dataset stores float32 values, the			
	corresponding _FillValue will also be float32.			
long_name	A descriptive name that clearly describes the	Yes		
	content of the associated Dataset.			

Table 2-3: ECOSTRESS Specific Local Attributes

2.4 Data Definition Standards

The following sections of this document specify the characteristics and definitions of every data element stored in the ECOSTRESS data products. Table 2-4 defines each of the specific characteristics that are listed in those sections. Some of these characteristics correspond with the ECOSTRESS HDF5 Attributes that are associated with each Dataset. Data element characteristics that correspond to ECOSTRESS HDF5 Attributes bear the same name. The

ECOSTRESS L3(ET_ALEXI) PSD D-94651, Preliminary November 18, 2019 remaining characteristics are descriptive data that help users better understand the data product content.

In some situations, a standard characteristic may not apply to a data element. In those cases, the field contains the character string 'n/a'. Hexadecimal representation sometimes indicates data content more clearly. Numbers represented in hexadecimal begin with the character string '0x'.

Characteristic	Definition
Type	The data representation of the element within the storage medium. The
	storage class specification must conform to a valid ECOSTRESS type.
Units	Units of measure. Typical values include "deg", "degC", "Kelvin",
	"meters/second", "meters", "m**2", "seconds" and "counts".
	Appendix A includes references to important data measurement unit
	symbols

Table 2-4: Data Element Characteristic Definitions

2.4.1 Double Precision Time Variables

ECOSTRESS double precision time variables contain measurements relative to the J2000 epoch. Thus, these variables represent a real number of Standard International (SI) compatible seconds since 11:58:55.816 on January 1, 2000 UTC.

2.4.2 Array Representation

This document employs array notation to demonstrate and clarify the correspondence among data elements in different product data elements. The array notation adopted in this document is similar to the standards of the Fortran programming language. Indices are one based. Thus, the first index in each dimension is one. This convention is unlike C or C++, where the initial index in each dimension is zero. In multidimensional arrays, the leftmost subscript index changes most rapidly. Thus, in this document, array elements ARRAY(15,1,5) and ARRAY(16,1,5) are stored contiguously.

HDF5 is designed to read data seamlessly regardless of the computer language used to write an application. Thus, elements that are contiguous using the dimension notation in this document will appear in contiguous locations in arrays for reading applications in any language with an HDF5 interface.

This document differentiates among array indices based on relative contiguity of storage of elements referenced with consecutive numbers in that index position. A faster or fastest moving index implies that the elements with consecutive numbers in that index position are stored in relative proximity in memory. A slower or slowest moving index implies that the elements referenced with consecutive indices are stored more remotely in memory. For instance, given array element ARRAY(15,1,5) in Fortran, the first index is the fastest moving index and the third index is the slowest moving index. On the other hand, given array element array[4][0][14] in C, the first index is the slowest moving index and the third index is the fastest moving index.

3.0 ECOSTRESS PRODUCT FILES

The ECOSTRESS product file will contain at least 3 groups of data: A standard metadata group that specifies the same type of contents for all products, a product specific metadata group that specifies those metadata elements that are useful for defining attributes of the product data, and the group(s) containing the product data. (Note: A product metadata is not to be confused with a HDF5 object metadata.)

All product file names will have the form:

ECOSTRESS_<PROD_TYPE>_<00000>_<SSS>_<YYYYMMDDThhmmss>_<BBbb>_<VV>.<TYPE>

Where:

PROD TYPE: Product type =

L1B GEO, Geolocation parameters and at-sensor calibrated radiances

L2_LSTE, Land Surface Temperature and Emissivity data, with subsetted NWP data

L2 CLOUD, Level 2 Cloud mask data

L3_ET_PT-JPL, Evapotranspiration generated by JPL with PT-JPL

L3 ET ALEXI, Evapotranspiration generated by USDA with ALEXI/DisALEXI

L4 ESI PT-JPL, Evaporative Stress Index generated by JPL with PT-JPL

L4 ESI ALEXI, Evaporative Stress Index generated by USDA with ALEXI/DisALEXI

L4_WUE, Water Use Efficiency generated by JPL

OOOOO: Orbit number; starting at start of mission, ascending equatorial crossing

SSS: Scene ID; starting at first scene of each orbit YYYYMMDDThhmmss: Starting time of scene

BBbb: Build ID of software that generated product, Major+Minor (2+2 digits)

VV: Product version number (2 digits)

TYPE: File type extension= h5 for the data file

h5.xml for the metadata file.

3.1 Standard Metadata

This is the minimal set of metadata that must be included with each product file. The standard metadata consists of the following:

Table 3-1: Standard Product Metadata

Name	Type Size Example		Example
Group	StandardMetadata		
AncillaryInputPointer	String	variable	Group name of ancillary file list
AutomaticQualityFlag	String	variable	PASS/FAIL (of product data)
BuildID	String	variable	
CampaignShortName	String	variable	Primary
CollectionLabel	String	variable	
DataFormatType	String	variable	NCSAHDF5
DayNightFlag	String	variable	
EastBoundingCoordinate	LongFloat	8	
HDFVersionID	String	variable	1.8.16
ImageLines	Int32	4	2929

ECOSTRESS ES(ET_TEEL	\mathbf{H}_{j}	1051,110	110 (201
ImageLineSpacing	Float32	4	30
ImagePixels	Int32	4	3170
ImagePixelSpacing	Float32	4	30
InputPointer	String	variable	
InstrumentShortName	String	variable	ECOSTRESS
LocalGranuleID	String	variable	
LongName	String	variable	ECOSTRESS
NorthBoundingCoordinate	LongFloat	8	
PGEName	String	variable	L3_ET_ALEXI
PGEVersion	String	variable	
PlatformLongName	String	variable	ISS
PlatformShortName	String	variable	ISS
PlatformType	String	variable	Spacecraft
ProcessingLevelID	String	variable	3
ProcessingLevelDescription	String	variable	Level 3 Evapotranspiration ALEXI
ProducerAgency	String	variable	USDA-ARS
ProducerInstitution	String	variable	HRSL
ProductionDateTime	String	variable	
ProductionLocation	String	variable	
RangeBeginningDate	String	variable	
RangeBeginningTime	String	variable	
RangeEndingDate	String	variable	
RangeEndingTime	String	variable	
SceneID	String	variable	
ShortName	String	variable	L3_ALEXI
SISName	String	variable	
SISVersion	String	variable	Final
SouthBoundingCoordinate	LongFloat	8	
StartOrbitNumber	String	variable	
StopOrbitNumber	String	variable	
WestBoundingCoordinate	LongFloat	8	

3.2 Product-Specific Metadata

Any additional metadata necessary for describing the product will be recorded in this group.

Table 3-2: Product Specific Metadata

Name	Type	Size	Example
Group	L3 ET ALEXI Metadata		
QualityBitFlag	String	255	01011011011
AvgETUncertainty	LongFloat	8	
AncillaryFiles	Int	4	100
AncillaryFileAirTemperature	String	255	CFSR_FILENAME_DATE
AncillaryFileALEXIETd	String	255	EDAY_V7NC_CFSRINSOL_2018200.dat
AncillaryFileBadMask	String	255	
AncillaryFileInsolation	String	255	CFSR_FILENAME_DATE
AncillaryFileLandcover	String	255	NLCD_FILENAME
AncillaryFileLST	String	255	LSTE_FILENAME
AncillaryFileMixingRatio	String	255	CFSR_FILENAME_DATE

16

AncillaryFilePressure	String	255	CFSR FILENAME DATE
AncillaryFileSurfaceReflectance	String	255	LANDSAT TARFILE NAME
			LANDOAT_TAINTIEL_NAME
AncillaryFileSurfReflectanceFill	String	255	
AncillaryFileWindSpeed	String	255	CFSR_FILENAME_DATE
BandSpecification	Float32	6	
Projection	String	255	(ECOSTRESS or UTM)
Geotransform	String	255	
OGC Well Known Text	String	variable	Blank if Projection=ECOSTRESS
			If Projection=UTM, EG:
			{PROJCS["UTM Zone 11N",GEOGCS["GCS WG
			\$ 1984",DATUM["D WGS 1984",SPHEROID["
			WGS_1984",6378137.0,298.257223563]],PRIM
			EM["Greenwich",0.0],UNIT["Degree",0.017453
			2925199433]],PROJECTION["Transverse Merca
			tor"],PARAMETER["False Easting",500000.0],P
			ARAMETER["False Northing",0.0],PARAMETER[
			"Central_Meridian",-
			117.0],PARAMETER["Scale_Factor",0.9996],PAR
			AMETER["Latitude_Of_Origin",0.0],UNIT["Mete
			r",1.0]]}

3.3 Product Data

The product data will be stored in this group. Exact contents and layouts to be defined by each PGE and will conform to the HDF5 specifications.

Table 3-3: Product Data Definitions

Field Name	TYPE	UNIT	Field Data
GROUP	EVAPOTRANSPIRATION ALEXI		
ETdaily	Float	mm/day	
ETdailyUncertainty	Float	mm/day	
QualityFlag	UInt16	NA	

3.4 Product Metadata File

The product metadata for each product file will be generated by the PCS from the metadata contents of each product file. The metadata will be converted into extensible markup language (XML). These will be used by the DAAC for cataloging. Exact contents and layout to be defined by PCS

4.0 APPENDIX A: ABBREVIATIONS AND ACRONYMS

ALEXI Atmospheric-Land Exchange Inversion

ARS Agricultural Research Service
ASD Algorithm Specifications Document
ATBD Algorithm Theoretical Basis Document

CCB Change Control Board CDR Critical Design Review

CF Climate and Forecast (metadata convention)

CM Configuration Management
CONUS Continental United States
COTS Commercial Off The Shelf

DAAC Distributed Active Archive Center

dB DeciBel

DCN Document Change Notice

deg Degrees

deg/secDegrees per SecondDEMDigital Elevation Model

DisALEXI ALEXI Disaggregation algorithm

DN Data Number

EASE Equal Area Scalable Earth

ECI Earth Centered Inertial coordinate system
ECR Earth Centered Rotating coordinate system

ECS EOSDIS Core System

ECOSTRESS ECOsystem Spaceborne Thermal Radiometer on Space Station

EOS Earth Observing System

EOSDIS EOS Data and Information System

ESDIS Earth Science Data and Information System

ESDT Earth Science Data Type **Evaporative Stress Index** ESI ET Evapotranspiration FOV Field of View **FSW** Flight Software gigabytes, 10^9 bytes GB Ground Data System GDS **GHA** Greenwich Hour Angle Gigahertz, 10^9 hertz GHz

GMAO Global Modeling and Assimilation Office

GMT Greenwich Mean Time
GPP Gross Primary Production
GSE Ground Support Equipment
GSFC Goddard Space Flight Center
HDF Hierarchical Data Format
HK Housekeeping (telemetry)

HRSL Hydrology and Remote Sensing Laboratory

Hz Hertz

18

ECOSTRESS L3(ET ALEXI) PSD D-94651, Preliminary

November 18, 2019

HSD Health and Status Data I&T Integration and Test

ICD Interface Control Document

I/O Input/Output
IOC In-Orbit Checkout
IPA Inter-Project Agreement

ITAR International Traffic in Arms Regulation

JPL Jet Propulsion Laboratory

K Kelvin KHz Kilohertz

Km kilometer, 1000 meters
L0 – L4 Level 0 through Level 4
LAN Local Area Network
LEO Low Earth Orbit
LOE Level of Effort
LOM Life of Mission
LP Land Processes

LSTE Land Surface Temperature and Emissivity

m meter

MB megabytes, 10⁶ bytes Mbps Mega bits per second

MHz Megahertz

MMR Monthly Management Review MOA Memorandum of Agreement

MODIS Moderate Resolution Imaging Spectroradiometer

MOS Mission Operations System

m/s meters per second ms milliseconds MS Mission System

NASA National Aeronautics and Space Administration NCEP National Centers for Environmental Protection NCSA National Center for Supercomputing Applications

netCDF Network Common Data Format NISN NASA Integrated Services Network

NOAA National Oceanic and Atmospheric Administration

OA Operations Agreement

ODL Object Description Language
OODT Object Oriented Data Technology
ORR Operational Readiness Review
ORT Operational Readiness Test
PDR Preliminary Design Review

percent %, per hundred PR Problem Report

PSD Product Specifications Document

PT-JPL Priestly-Taylor-JPL QA Quality Assurance

rad radians

RDD Release Description Document

19

ECOSTRESS L3(ET ALEXI) PSD D-94651, Preliminary

November 18, 2019

RFA Request For Action

S/C Spacecraft SCP Secure Copy

SDP Software Development Plan

SDS Science Data System

sec, s seconds

SITP System Integration and Test Plan Software Management Plan **SMP** Software Operators Manual SOM TAI International Atomic Clock **Brightness Temperature** T_b To Be Determined TBD TBS To Be Specified TOA Time of Arrival **TPS** Third Party Software

USDA United State Department of Agriculture

USGS United States Geological Society
UTC Coordinated Universal Time
V&V Verification and Validation
WUE Water Use Efficiency

XML Extensible Markup Language